

Uncertainty Wizard

Uncertainty wizard is a plugin on top of tensorflow.keras,
allowing to easily and efficiently create uncertainty-aware deep neural networks:

	Plain Keras Syntax: Use the layers and APIs you know and love.

	Conversion from keras: Convert existing keras models into uncertainty aware models.

	Smart Randomness: Use the same model for point predictions and sampling based inference.

	Fast ensembles: Train and evaluate deep ensembles lazily loaded and using parallel processing.

	Super easy setup: Pip installable. Only tensorflow as dependency.

Documentation

	Installation

	User Guide: Models

	User Guide: Quantifiers

	Examples

	Complete API

	Paper

	Sources on Github [https://github.com/testingautomated-usi/uncertainty_wizard]

Note that our documentation assumes basic knowledge of the tensorflow.keras API.
If you do not know tensorflow.keras yet, check out the TensorflowGuide [https://www.tensorflow.org/guide].

Installation

The installation is as simple as

pip install uncertainty-wizard

Then, in any file where you want to use uncertainty wizard, add the following import statement:

import uncertainty_wizard as uwiz

Dependencies

We acknowledge that a slim dependency tree is critical to many practical projects.
Thus, the only dependency of uncertainty wizard is tensorflow>=2.3.0.

Note however that if you are still using python 3.6, you have to install
the backport dataclasses.

Note

Uncertainty Wizard is tested with tensorflow 2.3.0 and tensorflow is evolving quickly.
Please do not hesitate to report an issue if you find broken functionality in more recent tensorflow versions.

User Guide: Models

Uncertainty wizard supports three types of models capable to calculate uncertainties and confidences:

	
Stochastic Models (e.g. MC-Dropout)

Stochastic models use randomness during predictions (typically using dropout layers).
Then, for a given input, multiple predictions are made (-> sampling).
The final predictions und uncertainties are a function of the distribution of neural network outputs distributions
over all the observed samples.

	
Ensemble Models

Ensemble models are collections of models trained to answer the same problem,
but with slightly different weights due to different kernel initialization or slightly different training data.
Then, for a given input, a prediction is made on each model in the collection (-> sampling).
The final predictions und uncertainties are a function of the distribution of neural network outputs
over all the models in the ensemble.

	
Point Predictor Models [for classification problems only]

We call models which base their prediction and uncertainty quantification based on a single
inference on a single, traditional (i.e., non-bayesian) neural network a Point-Predictor models.
Point predictor based uncertainty quantification can typically only be applied to classification problems,
where the uncertainty quantification is based on the distribution of values in the softmax output layer.

See our papers and the references therein for a more detailed
for a detailed information about the here described techniques.

Stochastic Models (e.g. MC-Dropout)

Stochastic models are models in which some randomness is added to the network during training.
While this is typically done for network regularization, models trained in such a way can be used for
uncertainty quantification. Simply speaking:

Randomness (which is typically disabled during inference) can be enforced during inference,
leading to predictions which are impacted by the random noise.
By sampling multiple network outputs for the same input, we can infer the robustness of the network to the
random noise. We assume that the higher the robustness, the higher the networks confidence.

Uwiz stochastic models wrap a keras model, and inject a mechanism to automatically control the randomization
during inference.

TL;DR? Get started with two short snippets

Stochastic API: The simplest way to stochastic models

 model = uwiz.models.StochasticSequential()

 # The following lines are equivalent to a keras Sequential model
 model.add(tf.keras.layers.Dense(100)
 # Dropout and noise layers will be used to randomize predictions
 model.add(tf.keras.layers.Dropout(0.3))
 model.add(tf.keras.layers.Softmax(10))
 model.compile(..)
 model.fit(..)

 # Make predictions, and calculate the variation ratio as uncertainty metric
 # (where x_test are the inputs for which you want to predict...)
 pred, unc = model.predict_quantified(x_test, quantifier='var_ratio', num_samples=32)

Functional API: Full control over randomness

model = uwiz.models.StochasticFunctional()

We create an object that will serve as a flag during inference
indicating on whether randomization should be enabled
stochastic_mode = uwiz.models.stochastic.StochasticMode()

We construct input and output as for classical tensorflow models
Note that layers for prediction randomization have to be specified explicitly
input_l = tf.keras.layers.Input(100)
x = tf.keras.layers.Dense(100)(input_l)
x = uwiz.models.stochastic.layers.UwizBernoulliDropout(0.3, stochastic_mode=stochastic_mode)(x)
output_l = tf.keras.layers.Softmax(10)(x)
model = uwiz.models.FunctionalStochastic(input_l, output_l, stochastic_mode=stochastic_mode)
model.compile(..)
model.fit(..)

Make predictions and calculate uncertainty (as shown in example above)
pred, unc = model.predict_quantified(x_test, quantifier='var_ratio', num_samples=32)

Ensemble Models

LazyEnsembles are uncertainty wizards implementation of Deep Ensembles,
where multiple atomic models are trained for the same problem;
the output distribution (and thus uncertainty) is then inferred from predicting on all atomic models.

Multi-Processing

This ensemble implementation is lazy as it does not keep the atomic models in memory
(or even worse, in the tf graph).
Instead, atomic models are persisted on the file system and only loaded when needed -
and cleared from memory immediately afterwards.
To further increase performance, in particular on high performance GPU powered hardware setups,
where a single model instance training does not use the full GPU resources,
LazyEnsemble allows to create multiple concurrent tensorflow sessions, each running a dedicated model in parallel.
The number of processes to be used can be specified on essentially all of LazyEnsembles methods.

Models are loaded into a context, e.g. a gpu configuration which was configured before the model was loaded.
The default context, if multiple processes are used, sets the GPU usage to dynamic memory growth.
We recommend to set the number of processes conservatively, observe the system load
and increase the number of processes if possible.

If you use tensorflow in your main process, chances are the main thread allocates all available GPU resources.
In such case you may for example want to enabling dynamic growth on the main thread,
which can be done by calling the following utility method right after first importing tensorflow:
uwiz.models.ensemble_utils.DynamicGpuGrowthContextManager.enable_dynamic_gpu_growth()

Warning

By using too many processes you will quickly exhaust your systems resources.
Similarly, if you do not have a GPU: Your CPU will not be able to handle the high workload of training multiple
models in parallel.

Multi-Processing can be disabled by setting the number of processes to 0.
Then, predictions will be made in the main process on the main tensorflow session.
Attention: In this case, the tensorflow session will be cleared after every model execution!

The LazyEnsemble Interface & Workflow

LazyEnsemble exposes five central functions:
create
modify
consume
quantify_predictions
run_model_free
create, modify, consume, quantify_predictions or run_model_free.
In general, every of these functions expects a picklable function as input
which either creates, modifies or consumes a plain keras model, or uses it to make predictions.
Please refer to the
specific methods documentation [https://uncertainty-wizard.readthedocs.io/en/latest/source/uncertainty_wizard.models.html#uncertainty_wizard.models.LazyEnsemble]
and examples for details.

Furthermore LazyEnsemble exposes utility methods wrapping the above listed methods,
e.g. fit and predict_quantified, which expect numpy array inputs and automatically
serialize and deserialize them to be used in parallel processes.

Note

The less often you call methods on your ensemble, the less often we have to deserialize and persist your models
(which is some overhead). Thus, try reducing these calls for even faster processing:
For example, you may want to fit your model as part of the ensemble.create call.

Stability of Lazy Ensembles

To optimize GPU use, LazyEnsemble relies on some of tensorflows features which are (as of August 2020) still
experimental. Thus, by extension, our ensembles are also to be considered experimental.

TL;DR? Get started with one short snippet

Stochastic API: The simplest way to ensemble models

Define how models should be trained. This function must be picklable.
def model_creator(model_id: int):
 import tensorflow as tf
 model = tf.keras.models.Sequential()
 model.add(tf.keras.layers.Dense(100)
 model.add(tf.keras.layers.Dropout(0.3))
 model.add(tf.keras.layers.Softmax(10))
 model.compile(..)
 fit_history = model.fit(..)
 return model, fit_history.history

Define properties of the ensemble to be created
uwiz.models.LazyEnsemble(num_models=2,
 model_save_path="/tmp/demo_ensemble",
 default_num_processes=5)

Create and train the inner models in your ensemble according to your process defined above
ensemble.create(create_function=model_creator)

Now we are ready to make predictions
pred, unc = model.predict_quantified(x_test,
 quantifier='var_ratio',
 # For the sake of this example, lets assume we want to
 # predict with a higher batch size and lower process number
 # than our default settings.
 batch_size=128,
 num_processes=2)

Point Predictor Models

We call models which base their prediction and uncertainty quantification
based on a single inference on a single,
traditional (i.e., non-bayesian) neural network a Point-Predictor model.
In uncertainty wizard, we can use the stochastic model classes StochasticSequential
and StochasticFunctional for such predictions as well.
To do so, create or re-use a stochastic model as explained above.
Of course, if we only want to do point predictions,
the stochastic model does not have to contain any stochastic layers
(i.e., it can be deterministic).
Stochastic layers (e.g. Dropout) which are included in the network
are automatically disabled when doing point predictions.

The following snippet provides three examples on how to do point predictions on a stochastic model instance model:

Using the stochastic model classes for (non-sampled) point predictions

Example 1: Plain Keras Prediction
If we just want to use the keras model output (as it there were no uncertainty_wizard)
we can predict on the stochastic model as if it was a regular `tf.keras.Model`
nn_outputs = model.predict(x_test)

Example 2: Point Prediction Confidence and Uncertainty Metrics
We can also get confidences and uncertainties using predict_quantified.
For point-predictor quantifiers which don't rely on random sampling,
such as the prediction confidence score (PCS), randomness is automatically disabled
and the returned values are based on a one-shot prediction.
pred, unc = model.predict_quantified(x_test, quantifier='pcs')

Example 2b: Doing Point-Prediction and Sampling Based Interence in one Call
We can even combine point-prediction based and sampling based quantifiers
Randomization will only be used for the sampling based quantifiers
res = model.predict_quantified(x_test, quantifier=['pcs', 'var_ratio'])
If `quantifier` is a list, the returned res is also a list,
containing a (prediction, uncertainty_or_confidence_score) tuple
for every passed quantifier
point_predictor_predictions = res[0][0]
point_predictor_confidence_scores = res[0][1]
sampling_based_predictions = res[1][0]
sampling_based_var_ratio = res[1][1]

User Guide: Quantifiers

Quantifiers are dependencies, injectable into prediction calls,
which calculate predictions and uncertainties or confidences
from DNN outputs:

Use of quantifiers on uwiz models

 # Let's use a quantifier that calculates the entropy on a regression variable as uncertainty
 predictions, entropy = model.predict_quantified(x_test, quantifier='predictive_entropy')

 # Equivalently, we can pass the quantifier as object
 quantifier = uwiz.quantifiers.PredictiveEntropy()
 predictions, entropy = model.predict_quantified(x_test, quantifier=quantifer)

 # We can also pass multiple quantifiers.
 # In that case, `predict_quantified` returns a (prediction, confidence_or_uncertainty) tuple
 # for every passed quantifier.
 results = model.predict_quantified(x_test, quantifier=['predictive_entropy', 'mean_softmax')
 # results[0] is a tuple of predictions and entropies
 # results[1] is a tuple of predictions and mean softmax values

Besides the prediction, quantifiers quantify either the networks confidence or its uncertainty.
The difference between that two is as follows
(assuming that the quantifier actually correctly captures the chance of misprediction):

	In uncertainty quantification, the higher the value, the higher the chance of misprediction.

	In confidence quantification the lower the value, the higher the chance of misprediction.

For most applications where you use multiple quantifiers, you probably want to quantify
either uncertainties or confidences to allow to use the quantifiers outputs interchangeable.
Setting the param model.predict_quantified(..., as_confidence=True)
convert uncertainties into confidences. as_confidence=False converts confidences into uncertainties.
The default is ‘None’, in which case no conversions are made.

Note

Independent on how many quantifiers you pass to the predict_quantified method,
the outputs of the neural networks inference are re-used wherever possible for a more efficient execution.
Thus, it is better to call predict_quantified with two quantifiers than
to call predict_quantified twice, with one quantifier each.

Quantifiers implemented in Uncertainty Wizard

This Section provides an overview of the quantifiers provided in uncertainty wizard:
For a precise discussion of the quantifiers listed here, please consult our paper
and the docstrings of the quantifiers.

Point Prediction Quantifiers

	
Class

(uwiz.quantifiers.<…>)

	
Problem Type

	
Aliases

(besides class name)

	
MaxSoftmax

	
Classification

	
SM, softmax, max_softmax,

	
PredictionConfidenceScore

	
Classification

	
PCS, prediction_confidence_score

	
SoftmaxEntropy

	
Classification

	
SE, softmax_entropy

Monte Carlo Sampling Quantifiers

	
Class

(uwiz.quantifiers.<…>)

	
Problem Type

	
Aliases

(besides class name)

	
VariationRatio

	
Classification

	
VR, var_ratio,

variation_ratio

	
PredictiveEntropy

	
Classification

	
PE, pred_entropy,

predictive_entropy

	
MutualInformation

	
Classification

	
MI, mutu_info,

mutual_information

	
MeanSoftmax

	
Classification

	
MS, mean_softmax,

ensembling

	
StandardDeviation

	
Regression

	
STD, stddev, std_dev,

standard_deviation

Custom Quantifers

You can of course also use custom quantifiers with uncertainty wizard.
It’s as easy as extending uwiz.quantifiers.Quantifier and implement all abstract methods according
to the description in the superclass method docstrings.

Let’s for example assume you want to create an identity function quantifier for a sampling based DNN
(i.e., a stochastic DNN or a deep ensemble) for a classification problem,
which does not actually calculate a prediction and uncertainty, but just returns the observed DNN outputs.
This can be achieved using the following snippet:

Custom quantifier definition: Identity Quantifier

 class IdentityQuantifer(uwiz.quantifiers.Quantifier):
 @classmethod
 def aliases(cls) -> List[str]:
 return ["custom::identity"]

 @classmethod
 def takes_samples(cls) -> bool:
 return True

 @classmethod
 def is_confidence(cls) -> bool:
 # Does not matter for the identity function
 return False

 @classmethod
 def calculate(cls, nn_outputs: np.ndarray):
 # Return None as prediction and all DNN outputs as 'quantification'
 return None, nn_outputs

 @classmethod
 def problem_type(cls) -> uwiz.ProblemType:
 return uwiz.ProblemType.CLASSIFICATION

If you want to call your custom quantifier by its alias, you need to add it to the registry.
To prevent name clashes in future uncertainty wizard versions, where more quantifiers might be registered by default,
we recommend you to preprend “custom::” to any of your quantifiers aliases.

Register a quantifier in the quantifier registry

 custom_instance = IdentityQuantifier()
 uwiz.quantifiers.QuantifierRegistry().register(custom_instance)

 model = # (...) uwiz model creation, compiling and fitting
 x_test = # (...) get the data for your predictions

 # Now this call, where we calculate the variation ratio,
 # and also return the observed DNN outputs...
 results = model.predict_quantified(x_test, num_samples=20,
 quantifier=["var_ratio", "custom::identity"])
 # ... is equivalent to this call...
 results = model.predict_quantified(x_test, num_samples=20,
 quantifier=["var_ratio", IdentityQuantifier()])

Warning

Quantifiers added to the registry should be stateless and all their functions should be pure functions.
Otherwise, reproduction of results might not be possible.

Examples

Besides the examples provided in the user guides for the usage of models
and quantifiers, the following Jupyter notebooks explain
specific tasks:

	Creating a Stochastic Model using the Sequential APIThis shows the simplest, and recommended, way to create an uncertainty aware DNN which
is capable of calculating uncertainties and confidences based on point prediction approaches
as well as on stochastic samples based approaches (e.g. MC-Dropout)

[image: Open In Colab]

 All Uncertainty Wizard Methods

All Uncertainty Wizard Methods

Uncertainty Wizard aims for (and has, as far as we know) a 100% DocString coverage on public classes and methods.
We recommend consulting the DocStrings in your IDE while using uncertainty wizard.
Alternatively, the API can also be explored here:

	Index

	Module Index

Note that these indexes are auto-generated by Sphinx and are not always very nice to look at.
Apparently a standard in many python packages, some people seem to like them, though ;-)

 Paper

Paper

Uncertainty wizard was developed by Michael Weiss and Paolo Tonella at USI (Lugano, Switzerland).
If you use it for your research, please cite these papers:

@inproceedings{Weiss2021FailSafe,
 title={Fail-safe execution of deep learning based systems through uncertainty monitoring},
 author={Weiss, Michael and Tonella, Paolo},
 booktitle={2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST)},
 pages={24--35},
 year={2021},
 organization={IEEE}
}

@inproceedings{Weiss2021UncertaintyWizard,
 title={Uncertainty-wizard: Fast and user-friendly neural network uncertainty quantification},
 author={Weiss, Michael and Tonella, Paolo},
 booktitle={2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST)},
 pages={436--441},
 year={2021},
 organization={IEEE}
}

The first paper (preprint) [https://arxiv.org/abs/2102.00902] provides
an empricial study comparing the approaches implemented in uncertainty wizard,
and a list of lessons learned useful for reasearchers working with uncertainty wizard.
The second paper (preprint) [https://arxiv.org/abs/2101.00982] is a technical tool paper,
providing a more detailed discussion of uncertainty wizards api and implementation.

References to the original work introducing the techniques implemented
in uncertainty wizard are provided in the papers listed above.

 Python Module Index

 Python Module Index

 u

 		 	

 		
 u	

 	[image: -]
 	
 uncertainty_wizard	

 	
 	
 uncertainty_wizard.internal_utils	

 	
 	
 uncertainty_wizard.models	

 	
 	
 uncertainty_wizard.models.ensemble_utils	

 	
 	
 uncertainty_wizard.models.stochastic_utils.layers	

 	
 	
 uncertainty_wizard.quantifiers	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add() (uncertainty_wizard.models.StochasticSequential method)

 	after_end() (uncertainty_wizard.models.ensemble_utils.EnsembleContextManager class method)

 	aliases() (uncertainty_wizard.quantifiers.MaxSoftmax class method)

 	(uncertainty_wizard.quantifiers.MeanSoftmax class method)

 	(uncertainty_wizard.quantifiers.MutualInformation class method)

 	(uncertainty_wizard.quantifiers.PredictionConfidenceScore class method)

 	(uncertainty_wizard.quantifiers.PredictiveEntropy class method)

 	(uncertainty_wizard.quantifiers.Quantifier class method)

 	(uncertainty_wizard.quantifiers.SoftmaxEntropy class method)

 	(uncertainty_wizard.quantifiers.StandardDeviation class method)

 	(uncertainty_wizard.quantifiers.VariationRatio class method)

 	
 	as_tensor() (uncertainty_wizard.models.StochasticMode method)

B

 	
 	before_start() (uncertainty_wizard.models.ensemble_utils.EnsembleContextManager class method)

C

 	
 	calculate() (uncertainty_wizard.quantifiers.MaxSoftmax class method)

 	(uncertainty_wizard.quantifiers.MeanSoftmax class method)

 	(uncertainty_wizard.quantifiers.MutualInformation class method)

 	(uncertainty_wizard.quantifiers.PredictionConfidenceScore class method)

 	(uncertainty_wizard.quantifiers.PredictiveEntropy class method)

 	(uncertainty_wizard.quantifiers.Quantifier class method)

 	(uncertainty_wizard.quantifiers.SoftmaxEntropy class method)

 	(uncertainty_wizard.quantifiers.StandardDeviation class method)

 	(uncertainty_wizard.quantifiers.VariationRatio class method)

 	
 	call() (uncertainty_wizard.models.Stochastic method)

 	(uncertainty_wizard.models.stochastic_utils.layers.UwizBernoulliDropout method)

 	(uncertainty_wizard.models.stochastic_utils.layers.UwizGaussianDropout method)

 	(uncertainty_wizard.models.stochastic_utils.layers.UwizGaussianNoise method)

 	cast_conf_or_unc() (uncertainty_wizard.quantifiers.Quantifier class method)

 	compile() (uncertainty_wizard.models.Stochastic method)

 	consume() (uncertainty_wizard.models.LazyEnsemble method)

 	CpuOnlyContextManager (class in uncertainty_wizard.models.ensemble_utils)

 	create() (uncertainty_wizard.models.LazyEnsemble method)

D

 	
 	DeviceAllocatorContextManager (class in uncertainty_wizard.models.ensemble_utils)

 	DeviceAllocatorContextManagerV2 (class in uncertainty_wizard.models.ensemble_utils)

 	
 	disable_all_gpus() (uncertainty_wizard.models.ensemble_utils.CpuOnlyContextManager static method)

 	DynamicGpuGrowthContextManager (class in uncertainty_wizard.models.ensemble_utils)

E

 	
 	enable_dynamic_gpu_growth() (uncertainty_wizard.models.ensemble_utils.DynamicGpuGrowthContextManager class method)

 	ensemble_save_base_path (uncertainty_wizard.models.ensemble_utils.SaveConfig property)

 	
 	EnsembleContextManager (class in uncertainty_wizard.models.ensemble_utils)

 	evaluate (uncertainty_wizard.models.Stochastic property)

F

 	
 	filepath() (uncertainty_wizard.models.ensemble_utils.SaveConfig method)

 	find() (uncertainty_wizard.quantifiers.QuantifierRegistry class method)

 	fit (uncertainty_wizard.models.Stochastic property)

 	
 	fit() (uncertainty_wizard.models.LazyEnsemble method)

 	from_keras_layer() (uncertainty_wizard.models.stochastic_utils.layers.UwizBernoulliDropout class method)

 	(uncertainty_wizard.models.stochastic_utils.layers.UwizGaussianDropout class method)

 	(uncertainty_wizard.models.stochastic_utils.layers.UwizGaussianNoise class method)

G

 	
 	get_config() (uncertainty_wizard.models.stochastic_utils.layers.UwizBernoulliDropout method)

 	(uncertainty_wizard.models.stochastic_utils.layers.UwizGaussianDropout method)

 	(uncertainty_wizard.models.stochastic_utils.layers.UwizGaussianNoise method)

 	(uncertainty_wizard.models.StochasticSequential method)

 	
 	gpu_memory_limit() (uncertainty_wizard.models.ensemble_utils.DeviceAllocatorContextManager class method)

 	(uncertainty_wizard.models.ensemble_utils.DeviceAllocatorContextManagerV2 class method)

I

 	
 	inner (uncertainty_wizard.models.Stochastic property)

 	(uncertainty_wizard.models.StochasticFunctional property)

 	(uncertainty_wizard.models.StochasticSequential property)

 	
 	is_confidence() (uncertainty_wizard.quantifiers.Quantifier class method)

L

 	
 	LazyEnsemble (class in uncertainty_wizard.models)

 	
 	load_model() (in module uncertainty_wizard.models)

 	load_single_model() (uncertainty_wizard.models.ensemble_utils.EnsembleContextManager method)

M

 	
 	max_sequential_tasks_per_process() (uncertainty_wizard.models.ensemble_utils.EnsembleContextManager class method)

 	MaxSoftmax (class in uncertainty_wizard.quantifiers)

 	MeanSoftmax (class in uncertainty_wizard.quantifiers)

 	modify() (uncertainty_wizard.models.LazyEnsemble method)

 	
 module

 	uncertainty_wizard

 	uncertainty_wizard.internal_utils

 	uncertainty_wizard.models

 	uncertainty_wizard.models.ensemble_utils

 	uncertainty_wizard.models.stochastic_utils.layers

 	uncertainty_wizard.quantifiers

 	
 	MutualInformation (class in uncertainty_wizard.quantifiers)

N

 	
 	NoneContextManager (class in uncertainty_wizard.models.ensemble_utils)

P

 	
 	predict (uncertainty_wizard.models.Stochastic property)

 	predict_quantified() (uncertainty_wizard.models.LazyEnsemble method)

 	(uncertainty_wizard.models.Stochastic method)

 	PredictionConfidenceScore (class in uncertainty_wizard.quantifiers)

 	PredictiveEntropy (class in uncertainty_wizard.quantifiers)

 	problem_type() (uncertainty_wizard.quantifiers.MaxSoftmax class method)

 	(uncertainty_wizard.quantifiers.MeanSoftmax class method)

 	(uncertainty_wizard.quantifiers.MutualInformation class method)

 	(uncertainty_wizard.quantifiers.PredictionConfidenceScore class method)

 	(uncertainty_wizard.quantifiers.PredictiveEntropy class method)

 	(uncertainty_wizard.quantifiers.Quantifier class method)

 	(uncertainty_wizard.quantifiers.SoftmaxEntropy class method)

 	(uncertainty_wizard.quantifiers.StandardDeviation class method)

 	(uncertainty_wizard.quantifiers.VariationRatio class method)

Q

 	
 	Quantifier (class in uncertainty_wizard.quantifiers)

 	
 	QuantifierRegistry (class in uncertainty_wizard.quantifiers)

 	quantify_predictions() (uncertainty_wizard.models.LazyEnsemble method)

R

 	
 	register() (uncertainty_wizard.quantifiers.QuantifierRegistry class method)

 	
 	run_model_free() (uncertainty_wizard.models.LazyEnsemble method)

S

 	
 	save() (uncertainty_wizard.models.Stochastic method)

 	save_single_model() (uncertainty_wizard.models.ensemble_utils.EnsembleContextManager method)

 	SaveConfig (class in uncertainty_wizard.models.ensemble_utils)

 	SoftmaxEntropy (class in uncertainty_wizard.quantifiers)

 	StandardDeviation (class in uncertainty_wizard.quantifiers)

 	Stochastic (class in uncertainty_wizard.models)

 	stochastic_from_keras() (in module uncertainty_wizard.models)

 	
 	stochastic_mode_tensor (uncertainty_wizard.models.Stochastic property)

 	(uncertainty_wizard.models.StochasticFunctional property)

 	(uncertainty_wizard.models.StochasticSequential property)

 	StochasticFunctional (class in uncertainty_wizard.models)

 	StochasticMode (class in uncertainty_wizard.models)

 	StochasticSequential (class in uncertainty_wizard.models)

 	summary (uncertainty_wizard.models.Stochastic property)

T

 	
 	takes_samples() (uncertainty_wizard.quantifiers.MaxSoftmax class method)

 	(uncertainty_wizard.quantifiers.MeanSoftmax class method)

 	(uncertainty_wizard.quantifiers.MutualInformation class method)

 	(uncertainty_wizard.quantifiers.PredictionConfidenceScore class method)

 	(uncertainty_wizard.quantifiers.PredictiveEntropy class method)

 	(uncertainty_wizard.quantifiers.Quantifier class method)

 	(uncertainty_wizard.quantifiers.SoftmaxEntropy class method)

 	(uncertainty_wizard.quantifiers.StandardDeviation class method)

 	(uncertainty_wizard.quantifiers.VariationRatio class method)

U

 	
 	
 uncertainty_wizard

 	module

 	
 uncertainty_wizard.internal_utils

 	module

 	
 uncertainty_wizard.models

 	module

 	
 uncertainty_wizard.models.ensemble_utils

 	module

 	
 	
 uncertainty_wizard.models.stochastic_utils.layers

 	module

 	
 uncertainty_wizard.quantifiers

 	module

 	UncertaintyWizardWarning

 	UwizBernoulliDropout (class in uncertainty_wizard.models.stochastic_utils.layers)

 	UwizGaussianDropout (class in uncertainty_wizard.models.stochastic_utils.layers)

 	UwizGaussianNoise (class in uncertainty_wizard.models.stochastic_utils.layers)

V

 	
 	VariationRatio (class in uncertainty_wizard.quantifiers)

 uncertainty_wizard

uncertainty_wizard

	uncertainty_wizard package
	Subpackages
	uncertainty_wizard.internal_utils package
	Module contents

	uncertainty_wizard.models package
	Subpackages

	Module contents

	uncertainty_wizard.quantifiers package
	Module contents

	Module contents

 uncertainty_wizard.internal_utils package

uncertainty_wizard.internal_utils package

Module contents

Utils

	
exception uncertainty_wizard.internal_utils.UncertaintyWizardWarning

	Bases: Warning

Class for warnings generated by user uncertainty wizard.

 uncertainty_wizard.models.ensemble_utils package

uncertainty_wizard.models.ensemble_utils package

Classes

	
class uncertainty_wizard.models.ensemble_utils.CpuOnlyContextManager(model_id: int, varargs: Optional[dict] = None)

	Disables all GPU use, and runs all processes on the CPU

Note: Tensorflow will still see that cuda is installed,
but will not find any GPU devices and thus print a warning accordingly.

	
static disable_all_gpus()

	Makes sure no GPUs are visible

	
class uncertainty_wizard.models.ensemble_utils.DeviceAllocatorContextManager(model_id: int, varargs: Optional[dict] = None)

	DEPRECATED. Please use DeviceAllocatorContextManagerV2 instead.

This context manager configures tensorflow such a user-defined amount of processes for every available gpu
are started. In addition, running a process on the CPU can be enabled.

This is an abstract context manager. To use it, one has to subclass it and override (at least)
the abstract methods.

	
abstract classmethod gpu_memory_limit() → Optional[int]

	Override this method to specify the amount of MB which should be used
when creating the virtual device on the GPU. Ignored for CPUs.

Attention: This function must be pure: Repeated calls should always return the same value.

	Returns:

	The amount of MB which will be reserved on the selected gpu in the created context.

	
class uncertainty_wizard.models.ensemble_utils.DeviceAllocatorContextManagerV2(model_id: int, varargs: Optional[dict] = None)

	Distributes processes over multiple GPUs.

You can specify how many processes should be started on each GPU.
To use this context manager, you have to subclass it and override the abstract methods.

	
classmethod gpu_memory_limit() → Optional[int]

	Not needed in DeviceAllocatorContextManagerV2 anymore. Ignored.

	
class uncertainty_wizard.models.ensemble_utils.DynamicGpuGrowthContextManager(model_id: int, varargs: Optional[dict] = None)

	This context manager configures tensorflow such that multiple processes can use the main GPU at the same time.
It is the default in a lazy ensemble multiprocessing environment

	
classmethod enable_dynamic_gpu_growth()

	Configures tensorflow to set memory growth to ture on all GPUs
:return: None

	
class uncertainty_wizard.models.ensemble_utils.EnsembleContextManager(model_id: int, varargs: Optional[dict] = None)

	An abstract superclass of context managers which can be used to instantiate a context
on a newly created process.

Note that subclasses may override the constuctor, but they must not add or remove any arguments from it.

	
classmethod after_end() → None

	This method is called at the end of every context-aware call
(e.g., create, modify, predict_quantified, …). Hence, it is not called for every atomic model
individually.

Typically, this method would be used to setup requirements that the later created EnsembleContextManager
instances are relying on.

Default behavior if method not overridden: Nothing is done.

	
classmethod before_start() → None

	This method is called once whenever a context-aware call is made on an ensemble
(e.g., create, modify, predict_quantified, …). Hence, it is not called for every atomic model
individually.

Typically, this method would be used to setup requirements that the later created EnsembleContextManager
instances are relying on.

Default behavior if method not overridden: Nothing is done.

	
load_single_model(model_id: int, save_config: SaveConfig) → Model

	This method will be called to load a single atomic model in the ensemble.
:param model_id: The id of the atomic model.
Is between 0 and the number of atomic model in the ensemble.
:param save_config: A save_config instance, providing information about the base path
of the ensemble
:return The loaded keras model.

	
classmethod max_sequential_tasks_per_process() → int

	This method is used to specify how often a process (i.e., for how many atomic models)
every single process can be used before being replaced with a new spawn process.
Extend this method and set the value to something low to prevent process pollution
(e.g. if there’s a memory leak in your process),
but beware that process creation (which implies tf initialization) is a costly task.

The method must be pure; every time it is called it should return the same value.

The method is ignored if using num_processes = 0, i.e., when executing in the main process.

Default If not overridden, this method returns 1000 which means that processes is
infinitely reused in any reasonable ensemble.

	Returns:

	A positive integer, specifying how often a process can be used before being replaced.

	
save_single_model(model_id: int, model: Model, save_config: SaveConfig) → None

	This method will be called to store a single atomic model in the ensemble.
:param model_id: The id of the atomic model.
Is between 0 and the number of atomic model in the ensemble.
:param model: The keras model to be saved.
:param save_config: A save_config instance, providing information about the base path
of the ensemble

	
class uncertainty_wizard.models.ensemble_utils.NoneContextManager(model_id: int, varargs: Optional[dict] = None)

	This context manager makes nothing at all,
i.e., the model will be executed in exactly the state the process was created.

This for example implies that the tensorflow default GPU configuration will be used.

It is save to use this ContextManager on an existing processes where there is already a tf.session
available.

	
class uncertainty_wizard.models.ensemble_utils.SaveConfig(ensemble_save_base_path: str, delete_existing: bool, expect_model: bool)

	This is a class containing information and utility methods about the saving of the ensemble.
Currently, it only contains a few static fields. This may change in the future.

	Instances of the SaveConfig can be used in the save_single_model and load_single_model
	methods of EnsembleContextManagers. However, consider SaveConfigs as read-only classes.
In addition, instances should only be created internally by uncertainty wizard
and not in custom user code.

	
property ensemble_save_base_path: str

	Returns the path (as string) where this ensemble is stored.
This path is always a folder and after successful creation of the ensemble,
it will contain the ensemble config file and a subfolder for every atomic model.
:return: The save path of this ensemble as string

	
filepath(model_id: int)

	This methods builds the path on which a particular atomic model should be saved / found
:param model_id: the id of the atomic model
:return: A path, where a folder named after the model id is appended to self.ensemble_save_base_path

 uncertainty_wizard.models.stochastic_utils package

uncertainty_wizard.models.stochastic_utils package

Submodules

uncertainty_wizard.models.stochastic_utils.layers module

The layers in this file are extensions of the randomized keras layers,
which are modified in a way to take the stochastic mode into account.

	
class uncertainty_wizard.models.stochastic_utils.layers.UwizBernoulliDropout(*args, **kwargs)

	Bases: Dropout

The extension of tf.keras.layers.Dropout to be used in uncertainty wizard stochastic models

	
call(inputs, training=None)

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns:

	A tensor or list/tuple of tensors.

	
classmethod from_keras_layer(layer: Dropout, stochastic_mode: StochasticMode)

	Attempts to create a new UwizBernoulliDropout instance based on the configuration (i.e. dropout rate)
of a passed Dropout layer
:param layer: The layer from which to read the dropout layer
:param stochastic_mode: The stochastic mode which allows to toggle randomness.
:return: A UwizBernoulliDropout, if casting was successful. Otherwise (i.e., if the passed layer was a casting preventing subtype of Dropout), the passed layer is returned and a warning is printed to the console.

	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.

	Returns:

	Python dictionary.

	
class uncertainty_wizard.models.stochastic_utils.layers.UwizGaussianDropout(*args, **kwargs)

	Bases: GaussianDropout

The extension of tf.keras.layers.GaussianDropout to be used in uncertainty wizard stochastic models

	
call(inputs, training=None)

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns:

	A tensor or list/tuple of tensors.

	
classmethod from_keras_layer(layer: GaussianDropout, stochastic_mode: StochasticMode)

	Attempts to create a new UwizGaussianDropout instance based on the configuration (i.e. dropout rate)
of a passed GaussianDropout layer
:param layer: The layer from which to read the dropout layer
:param stochastic_mode: The stochastic mode which allows to toggle randomness.
:return: A UwizGaussianDropout, if casting was successful. Otherwise (i.e., if the passed layer was a casting preventing subtype of GaussianDropout), the passed layer is returned and a warning is printed to the console.

	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.

	Returns:

	Python dictionary.

	
class uncertainty_wizard.models.stochastic_utils.layers.UwizGaussianNoise(*args, **kwargs)

	Bases: GaussianNoise

The extension of tf.keras.layers.GaussianNoise to be used in uncertainty wizard stochastic models

	
call(inputs, training=None)

	This is where the layer’s logic lives.

The call() method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()). It is recommended to create state, including
tf.Variable instances and nested Layer instances,

in __init__(), or in the build() method that is

called automatically before call() executes for the first time.

	Parameters:

	
	inputs – Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
- inputs must be explicitly passed. A layer cannot have zero

arguments, and inputs cannot be provided via the default value
of a keyword argument.

	NumPy array or Python scalar values in inputs get cast as
tensors.

	Keras mask metadata is only collected from inputs.

	Layers are built (build(input_shape) method)
using shape info from inputs only.

	input_spec compatibility is only checked against inputs.

	Mixed precision input casting is only applied to inputs.
If a layer has tensor arguments in *args or **kwargs, their
casting behavior in mixed precision should be handled manually.

	The SavedModel input specification is generated using inputs
only.

	Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for inputs and not for tensors in
positional and keyword arguments.

	*args – Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.

	**kwargs – Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
- training: Boolean scalar tensor of Python boolean indicating

whether the call is meant for training or inference.

	mask: Boolean input mask. If the layer’s call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).

	Returns:

	A tensor or list/tuple of tensors.

	
classmethod from_keras_layer(layer: GaussianNoise, stochastic_mode: StochasticMode)

	Attempts to create a new UwizGaussianNoise instance based on the configuration (i.e. the standard deviation)
of a passed GaussianNoise layer
:param layer: The layer from which to read the dropout layer
:param stochastic_mode: The stochastic mode which allows to toggle randomness.
:return: A UwizGaussianNoise, if casting was successful. Otherwise (i.e., if the passed layer was a casting preventing subtype of GaussianNoise), the passed layer is returned and a warning is printed to the console.

	
get_config()

	Returns the config of the layer.

A layer config is a Python dictionary (serializable)
containing the configuration of a layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.

The config of a layer does not include connectivity
information, nor the layer class name. These are handled
by Network (one layer of abstraction above).

Note that get_config() does not guarantee to return a fresh copy of
dict every time it is called. The callers should make a copy of the
returned dict if they want to modify it.

	Returns:

	Python dictionary.

 uncertainty_wizard.models package

uncertainty_wizard.models package

Subpackages

	uncertainty_wizard.models.ensemble_utils package
	CpuOnlyContextManager
	CpuOnlyContextManager.disable_all_gpus()

	DeviceAllocatorContextManager
	DeviceAllocatorContextManager.gpu_memory_limit()

	DeviceAllocatorContextManagerV2
	DeviceAllocatorContextManagerV2.gpu_memory_limit()

	DynamicGpuGrowthContextManager
	DynamicGpuGrowthContextManager.enable_dynamic_gpu_growth()

	EnsembleContextManager
	EnsembleContextManager.after_end()

	EnsembleContextManager.before_start()

	EnsembleContextManager.load_single_model()

	EnsembleContextManager.max_sequential_tasks_per_process()

	EnsembleContextManager.save_single_model()

	NoneContextManager

	SaveConfig
	SaveConfig.ensemble_save_base_path

	SaveConfig.filepath()

	uncertainty_wizard.models.stochastic_utils package
	Submodules

	uncertainty_wizard.models.stochastic_utils.layers module
	UwizBernoulliDropout
	UwizBernoulliDropout.call()

	UwizBernoulliDropout.from_keras_layer()

	UwizBernoulliDropout.get_config()

	UwizGaussianDropout
	UwizGaussianDropout.call()

	UwizGaussianDropout.from_keras_layer()

	UwizGaussianDropout.get_config()

	UwizGaussianNoise
	UwizGaussianNoise.call()

	UwizGaussianNoise.from_keras_layer()

	UwizGaussianNoise.get_config()

Module contents

Uncertainty wizard models and corresponding utilities

	
class uncertainty_wizard.models.LazyEnsemble(num_models: int, model_save_path: str, delete_existing: bool = True, expect_model: bool = False, default_num_processes: int = 1)

	Bases: _UwizModel

LazyEnsembles are uncertainty wizards implementation of Deep Ensembles,
where multiple atomic models are trained for the same problem;
the output distribution (and thus uncertainty) is then inferred from predicting on all atomic models.

** Multi-Processing **

This ensemble implementation is lazy as it does not keep the atomic models in memory
(or even worse, in the tf graph).
Instead, atomic models are persisted on the file system and only loaded when needed -
and discarded immediately afterwards.
To further increase performance, in particular on high performance GPU powered hardware setups,
where a single model instance training does not use the full GPU resources,
LazyEnsemble allows to create multiple concurrent tensorflow sessions, each running a dedicated model in parallel.
The number of processes to be used can be specified on essentially any LazyEnsemble function.

Models are loaded into a context, e.g. a gpu configuration which was configured before the model was loaded.
The default context, if multiple processes are used, sets the GPU usage to dynamic memory growth.
Pay attention: By using too many processes, it is easy to exhaust your systems resources.
Thus, we recommend to set the number of processes conservatively, observe the system load
and increase the number of processes if possible.
Default contexts are uwiz.models.ensemble_utils.DynamicGpuGrowthContextManager if multiprocessing is enables,
and uwiz.models.ensemble_utils.NoneContextManager otherwise.

Note: Multi-Processing can be disabled by setting the number of processes to 0.
Then, predictions will be made in the main process on the main tensorflow session.
Attention: In this case, the tensorflow session will be cleared after every model execution!

** The LazyEnsemble Interface & Workflow **

LazyEnsemble exposes four central functions: create, modify and consume.
In general, every of these functions expectes a picklable function at input
which either creates, modifies or consumes a plain keras model.
Please refer to the specific methods documentation for details.
Furthermore LazyEnsemble exposes utility methods wrapping the above listed methods,
e.g. fit and predict_quantified, which expect numpy array inputs and automatically
serialize and deserialize them to be used in parallel processes.

** Stability of Lazy Ensembles **

To optimize GPU use, LazyEnsemble relies on some of tensorflows experimental features and is thus,
by extension, also to be considered experimental.

	
consume(consume_function: Callable[[int, Model], T], num_processes: Optional[int] = None, context: Optional[Callable[[int], EnsembleContextManager]] = None, models: Optional[Iterable[int]] = None) → List[T]

	This function uses the atomic models in the ensemble without changing them.
At its core stands a consume_function:
This custom function takes as input the id of the model to be modified (which may be ignored)
and the model instance.
It is expected to return a picklable consumption result.
You should refrain from returning extremely large consumption results,
as they will be kept in memory and may occupy too many system resources.
In such a case, you may want to persist the results and return None as a consumption result instead.

Attention While this function can be used for predictions, you’d probably prefer to use
ensemble.quantify_predictions(…) instead, which wraps this functions and allows to apply
quantifiers for overall prediction inference and uncertainty quantification.

	Parameters:

	
	consume_function – A picklable function to consume atomic models,
as explained in the description above.

	num_processes – The number of processes to use.
Default: The default or value specified when creating the lazy ensemble.

	context – A contextmanager which prepares a newly crated process for execution
(e.g. by configuring the gpus). See class docstring for explanation of default values.

	models – The ids of the atomic models to be consumed.
If None (default), all models will be consumed.

	Returns:

	The reports returned by the create_function executions.

	
create(create_function: Callable[[int], Tuple[Model, T]], num_processes: Optional[int] = None, context: Optional[Callable[[int, dict], EnsembleContextManager]] = None, models: Optional[Iterable[int]] = None) → List[T]

	This function takes care of the creation of new atomic models for this ensemble instance.
At its core stands a create_function:
This custom function takes as input the id of the model to be generated (which may be ignored),
and is expected to return the newly created keras model and some custom,
picklable, creation report (e.g. the fit history).
If not required, the returned report may be None.
You should refrain from returning extremely large report object,
as they will be kept in memory and may occupy too many system resources.

	Parameters:

	
	create_function – A picklable function to create new atomic models,
as explained in the description above.

	num_processes – The number of processes to use.
Default: The default or value specified when creating the lazy ensemble.

	context – A contextmanager which prepares a newly crated process for execution
(e.g. by configuring the gpus). See class docstring for explanation of default values.

	models – The ids of the atomic models to be created.
If None (default), all models will be created.

	Returns:

	The reports returned by the create_function executions.

	
fit(x: Optional[ndarray] = None, y: Optional[ndarray] = None, batch_size: Optional[int] = None, epochs: int = 1, verbose: int = 1, callbacks=None, validation_split: float = 0.0, validation_data: Optional[Tuple[ndarray, ndarray]] = None, shuffle: bool = True, class_weight: Optional[Dict[int, float]] = None, sample_weight: Optional[ndarray] = None, initial_epoch: int = 0, steps_per_epoch: Optional[int] = None, validation_steps: Optional[int] = None, validation_freq: int = 1, pickle_arrays=True, num_processes=None, context: Optional[Callable[[int], EnsembleContextManager]] = None)

	An easy access to keras fit function.
As the inputs are pickled and distributed onto processes, only numpy array are accepted for the data params
and no callbacks can be provided.

If this is too restrictive for your use-case, consider using model.modify to setup your fit process
and generate the datasets / callbacks right in the map_function.

	Parameters:

	
	x – See tf.keras.Model.fit documentation.

	y – See tf.keras.Model.fit documentation.

	batch_size – See tf.keras.Model.fit documentation.

	epochs – See tf.keras.Model.fit documentation.

	verbose – See tf.keras.Model.fit documentation.

	callbacks – See tf.keras.Model.fit documentation.

	validation_split – See tf.keras.Model.fit documentation.

	validation_data – See tf.keras.Model.fit documentation.

	shuffle – See tf.keras.Model.fit documentation.

	class_weight – See tf.keras.Model.fit documentation.

	sample_weight – See tf.keras.Model.fit documentation.

	initial_epoch – See tf.keras.Model.fit documentation.

	steps_per_epoch – See tf.keras.Model.fit documentation.

	validation_steps – See tf.keras.Model.fit documentation.

	validation_freq – See tf.keras.Model.fit documentation.

	pickle_arrays – If true, the arrays are stored to the file system
and deserialized in every child process to save memory.

	num_processes – The number of processes to use.
Default: The default or value specified when creating the lazy ensemble.

	context – A contextmanager which prepares a newly crated process for execution
(e.g. by configuring the gpus). See class docstring for explanation of default values.

	Returns:

	The fit histories of the atomic models

	
modify(map_function: Callable[[int, Model], Tuple[Model, T]], num_processes: Optional[int] = None, context: Optional[Callable[[int], EnsembleContextManager]] = None, models: Optional[Iterable[int]] = None) → List[T]

	This function takes care of modifications of previously generated atomic models for this ensemble instance.
At its core stands a map_function:
This custom function takes as input the id of the model to be modified (which may be ignored)
and the model instance.
It is expected to return the modified (or replaced) keras model and some custom,
picklable, modification report (e.g. the fit history).
If not required, the returned report may be None.
You should refrain from returning extremely large report object,
as they will be kept in memory and may occupy too many system resources.

Attention Whenever possible, try to reduce the number of calls to this function.
For example, it is often possible to train models as part of the ‘create’ call.
This will result in the creation of less processes and thus a faster overall performance.

	Parameters:

	
	map_function – A picklable function to modify atomic models,
as explained in the description above.

	num_processes – The number of processes to use.
Default: The default or value specified when creating the lazy ensemble.

	context – A contextmanager which prepares a newly crated process for execution
(e.g. by configuring the gpus). See class docstring for explanation of default values.

	models – The ids of the atomic models to be modified.
If None (default), all models will be modified.

	Returns:

	The reports returned by the create_function executions.

	
predict_quantified(x: ndarray, quantifier: Union[Quantifier, Iterable[Union[str, Quantifier]]], batch_size: int = 32, verbose: int = 0, steps=None, as_confidence: Union[None, bool] = None, num_processes=None, context=None, models: Optional[Iterable[int]] = None, return_alias_dict: bool = False)

	Utility function to make quantified predictions on numpy arrays.
Note: The numpy arrays are replicated on every created process and will thus quickly consume a lot of memory.

	Parameters:

	
	x – An (unbatched) numpy array, to be used in tf.keras.Model.predict

	quantifier – A single or a collection of (sampling expecting) uwiz.quantifiers

	batch_size – The batch size to use in tf.keras.Model.predict

	verbose – Not yet supported.

	steps – The number of steps to use in tf.keras.Model.predict

	as_confidence – If true, uncertainties are multiplied by (-1), if false,
confidences are multiplied by (-1). Default: No transformations.

	num_processes – The number of processes to use. Default:
The default or value specified when creating the lazy ensemble.

	context – A contextmanager which prepares a newly crated process for execution
(e.g. by configuring the gpus). See class docstring for explanation of default values.

	models – A list of model indices to use for prediction. Default: `None`(All models).

	return_alias_dict – If true, the result is returned as a dictionary with the quantifier aliases as keys.

	Returns:

	If return_alias_dict=True, a dict with all quantifier aliases as keys
and (predictions, uncertainties_or_confidences) as values.
Otherwise (default), a tuple (predictions, uncertainties_or_confidences) if a single quantifier was
passed as string or instance, or a collection of such tuples if the passed quantifiers was an iterable.

	
quantify_predictions(quantifier: Union[Quantifier, Iterable[Quantifier]], consume_function: Callable[[int, Model], Any], as_confidence: Optional[bool] = None, num_processes: Optional[int] = None, context: Optional[Callable[[int], EnsembleContextManager]] = None, models: Optional[Iterable[int]] = None, return_alias_dict: bool = False)

	A utility function to make predictions on all atomic models and then infer overall predictions and uncertainty
(or confidence) on those predictions.

The test data is expected to be loaded directly in the consume function.
This function, which gets the atomic model id and the atomic model as inputs,
is expected to return the predictions, i.e., the results of a model.predict(..) call.
:param quantifier: A single or a collection of (sampling expecting) uwiz.quantifiers
:param consume_function: A picklable function to make predictions on atomic models, as explained in the description above.
:param as_confidence: If true, uncertainties are multiplied by (-1), if false, confidences are multiplied by (-1). Default: No transformations.
:param num_processes: The number of processes to use. Default: The default or value specified when creating the lazy ensemble.
:param context: A contextmanager which prepares a newly crated process for execution (e.g. by configuring the gpus). See class docstring for explanation of default values.
:param models: A list of model indices to use for prediction. Default: None`(All models).
:param return_alias_dict: If true, the result is returned as a dictionary with the quantifier aliases as keys.
:return: If `return_alias_dict=True, a dict with all quantifier aliases as keys

and (predictions, uncertainties_or_confidences) as values.
Otherwise (default), a tuple (predictions, uncertainties_or_confidences) if a single quantifier was
passed as string or instance, or a collection of such tuples if the passed quantifiers was an iterable.

	
run_model_free(task: Callable[[int], T], num_processes: Optional[int] = None, context: Optional[Callable[[int], EnsembleContextManager]] = None, num_times: Optional[int] = None) → List[T]

	Runs a task for every model, but without actually loading or persisting any model

Hint: If you do not use the gpu for the passed task, consider passing
context=uwiz.models.ensemble_utils.CpuOnlyContextManager.

	Parameters:

	
	task – The picklable function to be run for every model.

	num_processes – The number of processes to use.
Default: The default or value specified when creating the lazy ensemble.

	context – A contextmanager which prepares a newly crated process for execution
(e.g. by configuring the gpus). See class docstring for explanation of default values.

	num_times – The number of times to run the task.

	Returns:

	The reports returned by the create_function executions.

	
class uncertainty_wizard.models.Stochastic

	Bases: _UwizModel

Stochastic models are models in which some randomness is added to the network during training.
While this is typically done for network regularization, models trained in such a way can be used for
uncertainty quantification. Simply speaking:

Randomness (which is typically disabled during inference) can be enforced during inference,
leading to predictions which are impacted by the random noise.
By sampling multiple network outputs for the same input, we can infer the robustness of the network to the
random noise. We assume that the higher the robustness, the higher the networks confidence.

Instances of stochastic uncertainty wizard models can also be used in a non-stochastic way
as as point prediction models (i.e., models without sampling)
by calling the model.predict function
or by passing a quantifier which does not rely on sampling to model.predict_quantified (such as Max-Softmax).
Randomization during model inference is automatically enabled or disabled.

	
call(inputs, training=None, mask=None)

	See tf.keras.Model.call for the documentation: The call is forwarded
:param inputs: See tf.keras docs
:param training: See tf.keras docs
:param mask: See tf.keras docs
:return: See tf.keras docs

	
compile(optimizer='rmsprop', loss=None, metrics=None, loss_weights=None, weighted_metrics=None, run_eagerly=None, expect_deterministic: bool = False)

	This wraps the tf.keras.Model.compile method, but checks before if a stochastic layer was added to the model:
If none was added, a warning is printed.

This behavior can be turned of if you only intend to use the model as point predictor.
In this case, set expect_deterministic to True.

	Parameters:

	
	optimizer – See tf.keras.Model docs

	loss – See tf.keras.Model docs

	metrics – See tf.keras.Model docs

	loss_weights – See tf.keras.Model docs

	weighted_metrics – See tf.keras.Model docs

	run_eagerly – See tf.keras.Model docs

	expect_deterministic – Iff true, the model is not checked for randomness. Default: False

	Returns:

	See tf.keras.Model docs

	
property evaluate

	Direct access to the evaluate method the wrapped keras model.
See tf.keras.Model.evaluate for precise documentation of this method.

Can be called as stochastic_model.evaluate(…), equivalent to how fit would be called on a plain keras model.
This means that no stochastic sampling is done.

	Returns:

	The evaluate method of the wrapped model

	
property fit

	Direct access to the fit method the wrapped keras model.
See tf.keras.Model.fit for precise documentation of this method.

Can be called as stochastic_model.fit(…), equivalent to how fit would be called on a plain keras model.
:return: The fit method of the wrapped model

	
abstract property inner: Model

	Direct access to the wrapped keras model.
Use this if you want to directly work on the wrapped model.
When using this, make sure not to modify the stochastic layers or the stochastic_mode tensor on the model.

Returns: the tf.keras.Model wrapped in this StochasticSequential.

	
property predict

	Direct access to the predict method the wrapped keras model.
See tf.keras.Model.predict for precise documentation of this method.

Note that no confidences are calculated if calling this predict method, and the stochastic layers are disabled.
To calculate confidences, call model.predict_quantified(…) instead of model.predict(…)

Can be called as model.predict(…),
equivalent to how predict would be called on a plain keras model.
:return: The predict method of the wrapped model

	
predict_quantified(x: Union[DatasetV2, ndarray], quantifier: Union[Quantifier, str, Iterable[Union[str, Quantifier]]], sample_size: int = 64, batch_size: int = 32, verbose: int = 0, steps=None, as_confidence: Union[None, bool] = None, broadcaster: Optional[Broadcaster] = None, return_alias_dict: bool = False)

	Calculates predictions and uncertainties (or confidences) according to the passed quantifer(s).
Sampling is done internally.
Both point-predictor and sampling based quantifiers can be used in the same method call.
Uwiz automatically enables and disables the randomness of the model accordingly.
:param x: The inputs for which the predictions should be made. tf.data.Dataset (unbatched) or numpy array.
:param quantifier: The quantifier or quantifier alias to use (or a collection of them)
:param sample_size: The number of samples to be used for sample-expecting quantifiers
:param batch_size: The batch size to be used for predictions
:param verbose: Prediction process logging, as in tf.keras.Model.fit
:param steps: Predictions steps, as in tf.keras.Model.fit. Is adapted according to chosen sample size.
:param as_confidence: If true, uncertainties are multiplied by (-1),
if false, confidences are multiplied by (-1). Default: No transformations.
:param broadcaster: Sampling Related Dependencies. If None, the DefaultBroadcaster will be used.
:param return_alias_dict: If true, the result is returned as a dictionary with the quantifier aliases as keys.
:return: If return_alias_dict=True, a dict with all quantifier aliases as keys

and (predictions, uncertainties_or_confidences) as values.

Otherwise (default), a tuple (predictions, uncertainties_or_confidences) if a single quantifier was
passed as string or instance, or a collection of such tuples if the passed quantifiers was an iterable.

	
save(filepath: str, overwrite: bool = True, include_optimizer: bool = True, save_format: Optional[str] = None, signatures=None, options=None)

	Save the model to file, as on plain tf models. Note that you must not use the h5 file format.

** Attention ** uwiz models must be loaded using uwiz.models.load_model AND NOT using the corresponding
keras method.

See below the keras documentation, with applies for this method as well
(taking in account the limitations mentioned above)

	
abstract property stochastic_mode_tensor: Variable

	Get access to the flag used to enable and disable the stochastic behavior.

Returns: A boolean 0-dimensions tensorflow variable.

	
property summary

	Direct access to the summary method the wrapped keras model.
See tf.keras.Model.summary for precise documentation of this method.

	
class uncertainty_wizard.models.StochasticFunctional(inputs, outputs, stochastic_mode: StochasticMode, name: Optional[str] = None)

	Bases: Stochastic

A stochastic wrapper of a tf.keras.Model, allowing to build models using the functional interface.
Note that when using the functional interface, you need to use uwiz.models.stochastic.layers
or build your own Stochastic-Mode dependent stochastic layers. See the online user guide for more info.

Stochastic models are models in which some randomness is added to the network during training.
While this is typically done for network regularization, models trained in such a way can be used for
uncertainty quantification. Simply speaking:

Randomness (which is typically disabled during inference) can be enforced during inference,
leading to predictions which are impacted by the random noise.
By sampling multiple network outputs for the same input, we can infer the robustness of the network to the
random noise. We assume that the higher the robustness, the higher the networks confidence.

Instances of stochastic uncertainty wizard models can also be used in a non-stochastic way
as as point prediction models (i.e., models without sampling)
by calling the model.predict function
or by passing a quantifier which does not rely on sampling to model.predict_quantified (such as Max-Softmax).
Randomization during model inference is automatically enabled or disabled.

	
property inner

	Direct access to the wrapped keras model.
Use this if you want to directly work on the wrapped model.
When using this, make sure not to modify the stochastic layers or the stochastic_mode tensor on the model.

Returns: the tf.keras.Model wrapped in this StochasticSequential.

	
property stochastic_mode_tensor

	Get access to the flag used to enable and disable the stochastic behavior.

Returns: A boolean 0-dimensions tensorflow variable.

	
class uncertainty_wizard.models.StochasticMode(tensor=None)

	Bases: object

Stochastic mode is a wrapper for a bool tensor which serves as flag during inference in an uwiz stochastic model:
If the flag is True, the inference in randomized. Otherwise, randomization is disabled.

When creating a StochasticFunctional model, you need to create a new StochasticMode(),
use it for any of your (custom?) layers that should have a behavior in a stochastic environment
than in a detererministic environment (for example your own randomization layer).

	
as_tensor()

	Get the tensor wrapped by this stochastic mode
:return: A boolean tensor

	
class uncertainty_wizard.models.StochasticSequential(layers=None, name=None)

	Bases: Stochastic

A stochastic wrapper of tf.keras.models.Sequential models, suitable for MC Dropout
and similar sampling based approaches on randomized models.

Stochastic models are models in which some randomness is added to the network during training.
While this is typically done for network regularization, models trained in such a way can be used for
uncertainty quantification. Simply speaking:

Randomness (which is typically disabled during inference) can be enforced during inference,
leading to predictions which are impacted by the random noise.
By sampling multiple network outputs for the same input, we can infer the robustness of the network to the
random noise. We assume that the higher the robustness, the higher the networks confidence.

Instances of stochastic uncertainty wizard models can also be used in a non-stochastic way
as as point prediction models (i.e., models without sampling)
by calling the model.predict function
or by passing a quantifier which does not rely on sampling to model.predict_quantified (such as Max-Softmax).
Randomization during model inference is automatically enabled or disabled.

	
add(layer, prevent_use_for_sampling=False)

	Adds the layer to the model. See docs of tf.keras.model.Sequential.add(layer) for details.

In addition, layers of type
tf.keras.layers.Dropout,
tf.keras.layers.GaussianNoise and
tf.keras.layers.GaussianDropout
are overridden by equivalent layers which allow to be enabled during inference for randomized predictions.

	Parameters:

	
	layer – layer instance to be added to the model.

	prevent_use_for_sampling – Do not use the layer for randomization during inference. Has only effect on layers of type Dropout, GaussianNoise or GaussianDropout

	
get_config()

	Not supported
:return: An empty config

	
property inner

	Direct access to the wrapped keras model.
Use this if you want to directly work on the wrapped model.
When using this, make sure not to modify the stochastic layers or the stochastic_mode tensor on the model.

Returns: the tf.keras.Model wrapped in this StochasticSequential.

	
property stochastic_mode_tensor

	Get access to the flag used to enable and disable the stochastic behavior.

Returns: A boolean 0-dimensions tensorflow variable.

	
uncertainty_wizard.models.load_model(path, custom_objects: Optional[dict] = None, compile=None, options=None)

	Loads an uncertainty wizard model that was saved using model.save(…).
See the documentation of tf.keras.models.load_model for further information about the method params.

For lazy ensembles: As they are lazy, only the folder path and the number of models are interpreted
by this model loading - no keras models are actually loaded yet.
Thus, custom_objects, compile and options must not be specified.

	Parameters:

	
	path – The path of the folder where the ensemble was saved.

	custom_objects – Dict containing methods for custom deserialization of objects.

	compile – Whether to compile the models.

	options – Load options, check tf.keras documentation for precise information.

	Returns:

	An uwiz model.

	
uncertainty_wizard.models.stochastic_from_keras(model: Model, input_tensors=None, clone_function=None, expect_determinism=False, temp_weights_path='tmp/weights')

	Creates a stochastic instance from a given tf.keras.models.Sequential model:
The new model will have the same structure (layers) and weights as the passed model.

All stochastic layers (e.g. tf.keras.layers.Dropout) will be used for randomization during randomized predictions.
If no stochastic layers are present, a ValueError is thrown.
The raising of the error can be suppressed by setting expect_determinism to true.

If your model contains custom layers, you can pass a function to clone_function to clone your custom layers,
or place the annotation @tf.keras.utils.register_keras_serializable() on your custom layers,
and make sure the get_config and from_config methods are implemented.
(uncertainty wizard will serialize and deserialize all layers).

	Parameters:

	
	model – The model to copy. Remains unchanged.

	input_tensors – Optional tensors to use as input_tensors for new model. See the corresponding parameter in tf.keras.models.clone_model for details.

	_clone_function – Optional function to use to clone layers. Will be applied to all layers except input layers and stochastic layers. See the corresponding parameter in tf.keras.models.clone_model for more details.

	expect_determinism – If True, deterministic models (e.g. models without stochastic layers) are accepted and no ValueError is thrown.

	temp_weights_path – The model weights are temporarily saved to the disk at this path. Folder is deleted after successful completion.

	Returns:

	A newly created stochastic model

 uncertainty_wizard.quantifiers package

uncertainty_wizard.quantifiers package

Module contents

This module contains all quantifiers used to infer prediction and confidence (or uncertainty)
from neural network outputs. It also contains the QuantifierRegistry which allows to refer to
quantifiers by alias.

	
class uncertainty_wizard.quantifiers.MaxSoftmax

	Bases: ConfidenceQuantifier

The MaxSoftmax is a confidence metric in one-shot classification.
It is the defaults in most simple use cases and sometimes also referred to
as ‘Vanilla Confidence Metric’.

Inputs/activations have to be normalized using the softmax function over all classes.
The class with the highest activation is chosen as prediction,
the activation of this highest activation is used as confidence quantification.

	
classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
classmethod calculate(nn_outputs: ndarray)

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

	
class uncertainty_wizard.quantifiers.MeanSoftmax

	Bases: ConfidenceQuantifier

A predictor & uncertainty quantifier, based on multiple samples (e.g. nn outputs) in a classification problem.

Both the prediction and the uncertainty score are calculated using the average softmax values over all samples.
This is sometimes also called ‘ensembling’, as it is often used in deep ensembles.

	
classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
classmethod calculate(nn_outputs: ndarray) → Tuple[ndarray, ndarray]

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

	
class uncertainty_wizard.quantifiers.MutualInformation

	Bases: UncertaintyQuantifier

A predictor & uncertainty quantifier, based on multiple samples (e.g. nn outputs) in a classification problem

The prediction is made using a plurality vote, i.e., the class with the highest value in most samples is selected.
In the case of a tie, the class with the lowest index is selected.

The uncertainty is quantified using the mutual information.
See the docs for a precise explanation of mutual information.

	
classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
classmethod calculate(nn_outputs: ndarray) → Tuple[ndarray, ndarray]

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

	
class uncertainty_wizard.quantifiers.PredictionConfidenceScore

	Bases: ConfidenceQuantifier

The Prediction Confidence Score is a confidence metric in one-shot classification.
Inputs/activations have to be normalized using the softmax function over all classes.
The class with the highest activation is chosen as prediction,
the difference between the two highest activations is used as confidence quantification.

	
classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
classmethod calculate(nn_outputs: ndarray)

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

	
class uncertainty_wizard.quantifiers.PredictiveEntropy

	Bases: UncertaintyQuantifier

A predictor & uncertainty quantifier, based on multiple samples (e.g. nn outputs) in a classification problem

The prediction is made using a plurality vote, i.e., the class with the highest value in most samples is selected.
In the case of a tie, the class with the lowest index is selected.

The uncertainty is quantified using the predictive entropy;
the entropy (base 2) of the per-class means of the sampled predictions.

	
classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
classmethod calculate(nn_outputs: ndarray) → Tuple[ndarray, ndarray]

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

	
class uncertainty_wizard.quantifiers.Quantifier

	Bases: ABC

Quantifiers are dependencies, injectable into prediction calls,
which calculate predictions and uncertainties or confidences
from DNN outputs.

The quantifier class is abstract and should not be directly implemented.
Instead, new quantifiers should extend uwiz.quantifiers.ConfidenceQuantifier
or uwiz.quantifiers.UncertaintyQuantifier instead.

	
abstract classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
abstract classmethod calculate(nn_outputs: ndarray)

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod cast_conf_or_unc(as_confidence: Union[None, bool], superv_scores: ndarray) → ndarray

	Utility method to convert confidence metrics into uncertainty and vice versa.
Call is_confidence() to find out if this is a uncertainty or a confidence metric.

The supervisors scores are converted as follows:

	Confidences are multiplied by (-1) iff as_confidence is False

	Uncertainties are multiplied by (-1) iff as_confidence is True

	Otherwise, the passed supervisor scores are returned unchanged.

	Parameters:

	
	as_confidence – : A boolean indicating if the scores should be converted to confidences (True) or uncertainties (False)

	superv_scores – : The scores that are to be converted, provided a conversion is needed.

	Returns:

	The converted scores or the unchanged superv_scores (if as_confidence is None or no conversion is needed)

	
abstract classmethod is_confidence() → bool

	Boolean flag indicating whether this quantifier quantifies uncertainty or confidence.
They are different as follows (assuming that the quantifier actually correctly captures the chance of misprediction):

	In uncertainty quantification, the higher the quantification, the higher the chance of misprediction.

	in confidence quantification the lower the quantification, the higher the change of misprediction.

	return:

	True iff this is a confidence quantifier, False if this is an uncertainty quantifier

	
abstract classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
abstract classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

	
class uncertainty_wizard.quantifiers.QuantifierRegistry

	Bases: object

The quantifier registry keeps track of all quantifiers and their string aliases.
This is primarily used to allow to pass string representations of quantifiers in predict_quantified
method calls, but may also be used for other purposes where dynamic quantifier selection is desired.

	
classmethod find(alias: str) → Quantifier

	Find quantifiers by their id.
:param alias: A string representation of the quantifier, as defined in the quantifiers aliases method
:return: A quantifier instance

	
classmethod register(quantifier: Quantifier) → None

	Use this method to add a new quantifier to the registry.
:param quantifier: The quantifier instance to be added.
:return: None

	
class uncertainty_wizard.quantifiers.SoftmaxEntropy

	Bases: UncertaintyQuantifier

The SoftmaxEntropy is a confidence metric in one-shot classification.

Inputs/activations have to be normalized using the softmax function over all classes.
The class with the highest activation is chosen as prediction,
the entropy over all activations is used as uncertainty quantification.

	
classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
classmethod calculate(nn_outputs: ndarray)

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

	
class uncertainty_wizard.quantifiers.StandardDeviation

	Bases: UncertaintyQuantifier

Measures the standard deviation over different samples of a regression problem, i.e., an arbitrary problem,
which is used as Uncertainty and the mean of the samples as prediction

This implementation can handle both regression prediction consisting of a single scalar dnn output
as well as larger-shaped dnn outputs. In the latter case, entropy is calculated and returned
for every position in the dnn output shape.

	
classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
classmethod calculate(nn_outputs: ndarray)

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

	
class uncertainty_wizard.quantifiers.VariationRatio

	Bases: UncertaintyQuantifier

A predictor & uncertainty quantifier, based on multiple samples (e.g. nn outputs) in a classification problem

The prediction is made using a plurality vote, i.e., the class with the highest value in most samples is selected.
In the case of a tie, the class with the lowest index is selected.

The uncertainty is quantified using the variation ratio 1 - w / S,
where w is the number of samples where the overall prediction equals the prediction of the sample
and S is the total number of samples.

	
classmethod aliases() → List[str]

	Aliases are string identifiers of this quantifier.
They are used to select quantifiers by string in predict methods (need to be registered in quantifier_registry).

Additionally, the first identifier in the list is used for logging purpose.
Thus, the returned list have at least length 1.

	Returns:

	list of quantifier identifiers

	
classmethod calculate(nn_outputs: ndarray) → Tuple[ndarray, ndarray]

	Calculates the predictions and uncertainties.

Note this this assumes batches of neural network outputs.
When using this method for a single nn output, make sure to reshape the passed array,
e.g. using x = np.expand_dims(x, axis=0)

The method returns a tuple of

	A prediction (int or float) or array of predictions

	A uncertainty or confidence quantification (float) or array of uncertainties

	Parameters:

	nn_outputs – The NN outputs to be considered when determining prediction and uncertainty quantification

	Returns:

	A tuple of prediction(s) and uncertainty(-ies).

	
classmethod problem_type() → ProblemType

	Specifies whether this quantifier is applicable to classification or regression problems
:return: One of the two enum values REGRESSION or CLASSIFICATION

	
classmethod takes_samples() → bool

	A flag indicating whether this quantifier relies on monte carlo samples
(in which case the method returns True)
or on a single neural network output
(in which case the method return False)

	Returns:

	True if this quantifier expects monte carlo samples for quantification. False otherwise.

 uncertainty_wizard package

uncertainty_wizard package

Subpackages

	uncertainty_wizard.internal_utils package
	Module contents
	UncertaintyWizardWarning

	uncertainty_wizard.models package
	Subpackages
	uncertainty_wizard.models.ensemble_utils package
	CpuOnlyContextManager

	DeviceAllocatorContextManager

	DeviceAllocatorContextManagerV2

	DynamicGpuGrowthContextManager

	EnsembleContextManager

	NoneContextManager

	SaveConfig

	uncertainty_wizard.models.stochastic_utils package
	Submodules

	uncertainty_wizard.models.stochastic_utils.layers module

	Module contents
	LazyEnsemble
	LazyEnsemble.consume()

	LazyEnsemble.create()

	LazyEnsemble.fit()

	LazyEnsemble.modify()

	LazyEnsemble.predict_quantified()

	LazyEnsemble.quantify_predictions()

	LazyEnsemble.run_model_free()

	Stochastic
	Stochastic.call()

	Stochastic.compile()

	Stochastic.evaluate

	Stochastic.fit

	Stochastic.inner

	Stochastic.predict

	Stochastic.predict_quantified()

	Stochastic.save()

	Stochastic.stochastic_mode_tensor

	Stochastic.summary

	StochasticFunctional
	StochasticFunctional.inner

	StochasticFunctional.stochastic_mode_tensor

	StochasticMode
	StochasticMode.as_tensor()

	StochasticSequential
	StochasticSequential.add()

	StochasticSequential.get_config()

	StochasticSequential.inner

	StochasticSequential.stochastic_mode_tensor

	load_model()

	stochastic_from_keras()

	uncertainty_wizard.quantifiers package
	Module contents
	MaxSoftmax
	MaxSoftmax.aliases()

	MaxSoftmax.calculate()

	MaxSoftmax.problem_type()

	MaxSoftmax.takes_samples()

	MeanSoftmax
	MeanSoftmax.aliases()

	MeanSoftmax.calculate()

	MeanSoftmax.problem_type()

	MeanSoftmax.takes_samples()

	MutualInformation
	MutualInformation.aliases()

	MutualInformation.calculate()

	MutualInformation.problem_type()

	MutualInformation.takes_samples()

	PredictionConfidenceScore
	PredictionConfidenceScore.aliases()

	PredictionConfidenceScore.calculate()

	PredictionConfidenceScore.problem_type()

	PredictionConfidenceScore.takes_samples()

	PredictiveEntropy
	PredictiveEntropy.aliases()

	PredictiveEntropy.calculate()

	PredictiveEntropy.problem_type()

	PredictiveEntropy.takes_samples()

	Quantifier
	Quantifier.aliases()

	Quantifier.calculate()

	Quantifier.cast_conf_or_unc()

	Quantifier.is_confidence()

	Quantifier.problem_type()

	Quantifier.takes_samples()

	QuantifierRegistry
	QuantifierRegistry.find()

	QuantifierRegistry.register()

	SoftmaxEntropy
	SoftmaxEntropy.aliases()

	SoftmaxEntropy.calculate()

	SoftmaxEntropy.problem_type()

	SoftmaxEntropy.takes_samples()

	StandardDeviation
	StandardDeviation.aliases()

	StandardDeviation.calculate()

	StandardDeviation.problem_type()

	StandardDeviation.takes_samples()

	VariationRatio
	VariationRatio.aliases()

	VariationRatio.calculate()

	VariationRatio.problem_type()

	VariationRatio.takes_samples()

Module contents

nav.xhtml

 Table of Contents

 		
 Uncertainty Wizard

 		
 Installation

 		
 Dependencies

 		
 User Guide: Models

 		
 Stochastic Models (e.g. MC-Dropout)

